NEWS | ECONOMY | LAWS | MILITARY | TECHNOLOGY| INVESTMENT | GADGET | INNOVATION | FUTURISTIC | TIPS | TRAVEL | INSURANCE | IT | IOT
Are We in a HAARP "Earthquake War"?
Fenomena Halo Matahari/ Bulan Dikelilingi Bulatan Pelangi
Gambar Halo bulan yg di ambil pada pukul 11.59 tgh malam 10/10/2011. 'Cincin' yang kelihatan adalah disebabkan oleh pembiasan cahaya bulan menembusi partikel air di dalam awan. |
Terdapat banyak jenis halo, tetapi kebanyakannya terjadi dari kristal ais dalam awan sirus sejuk yang terletak pada ketinggian 5–10 km di lapisan troposfera atas. Bentuk dan orientasi kristal-kristal ini menentukan bentuk halo yang terjadi.
A moon halo is an optical phenomenon produced by ice crystals(ice halo). The ice crystals create colored or white arcs and spots in the sky. Pix credit to Adlan AISB Dikemaskini : 10-10-2011 Fenomena Halo Bulan Gemparkan Penduduk Semenanjung Malaysia |
Thorium: A safer alternative for nuclear power generation?
What is nuclear power?
The word "nuclear" refers to the nucleus, or dense center of the atom. In a nuclear power reactor, these nuclei are split into smaller parts through a process known as fission. A sub-atomic particle known as a neutron strikes the nucleus of an atom of suitable fuel (particular isotopes of the heavy elements uranium and plutonium) breaking it into its component parts. Each fission results in the release of energy in the form of electromagnetic radiation and kinetic energy in the fragments of the split nucleus. This effect is twofold; the release of energy will produce heat, and the release of neutrons, which can in turn fission other atoms.
In material that has typically been employed as nuclear fuel, this reaction occurs in a "chain reaction" and is self-sustaining. When this is occurring, the reactor can be said to be"'critical". In a fission weapon, a mass of plutonium or uranium in excess of critical is assembled very quickly, with a flood of neutrons from a device known as an "initiator". The release of energy is extremely rapid and results in a massive explosion.
In a nuclear power reactor, the reaction is far slower and more controlled - the heat produced can be harnessed to boil water to spin turbines for the generation of electricity and this has been in practice for decades. The use of nuclear reactors for power generation began on 27 June 1954 at the Obninsk power plant in the former Soviet Union and has continued in numerous countries to this day.
There are of course, some significant problems with nuclear power. Fission reactions will always result in the production of radioactive waste products which require secure storage and pose a health risk to humans and the environment. There is the possibility that the operators may lose control of the fission chain reaction resulting in an accidental release of this material (often referred to as a "meltdown"). There's also the concern that reactors may also be used for the production of material suitable for nuclear weapons.
Modern nuclear reactors
The two main types of reactors used for commercial power generation are the pressurized water reactor (PBR) and the boiling water reactor (BWR), which both typically make use of uranium in the form of uranium oxide fuel rods. The criticality of the reactor is managed by control rods, which when inserted absorb neutrons that would otherwise cause the chain reaction to continue. The reactor can be shut down, or "scrammed", by the rapid insertion of these control rods. However, this is a manual process and there is a possibility of an error occurring.
Criticality, fertility and the potential of thorium
The element thorium, named after the Norse god of thunder, may provide a safer alternative as a fuel. The key difference between thorium and other nuclear fuels is that it cannot sustain a chain reaction on its own. Fissile fuels like uranium and plutonium are able to sustain a chain-reaction, yet fission can also be achieved in material like thorium that is not fissile but fertile - i.e. it can produce fissile material, if neutrons are provided from an outside source.
Thorium is estimated to be three to four times more plentiful than uranium in the Earth's crust and has the advantage of being found in nature in the one isotope, which makes it suitable as a nuclear fuel as it need not be enriched to separate the right isotope. For convenience, thorium fuel can be used in the form of a liquid molten salt mixture.
Accelerator Driven System
Fission occurs in thorium when atoms absorb a neutron to become a heavier isotope and quickly decay into an isotope of the element protactinium and then an isotope of uranium, which is fissioned when struck by an additional neutron. The number of neutrons produced is not sufficient for a self-sustained chain reaction.
A particle accelerator could be used to provide the necessary neutrons for fission to occur in thorium and a nuclear reactor making use of such an outside neutron source would be known as an 'accelerator driven system' (ADS).
The notion of the ADS is credited to Carlo Rubbia of the European Organisation for Nuclear Research (CERN) joint winner of the 1984 Nobel Prize for Physics. The ADS would likely be far smaller than other reactors and if the accelerator were to be turned off, the nuclear reaction would cease, although it should be noted that even in a reactor which is not critical, the heat from the decay of materials can be significant and cooling is required.
In a thorium reactor, quantities of other fuels could be included, without the fuel being capable of sustaining a chain reaction, and thus the reactor could be used to provide energy from disposing of material such as plutonium from disassembled nuclear weapons. It's also possible to ensure that the reactors are designed in such a way that it is not possible to extract fissile material, which can be used to manufacture nuclear weapons.
Though all nuclear reactors will produce waste products, a reactor fulled by thorium will produce far less long-lived waste products than one fueled by uranium or plutonium, with waste decaying to the same level of radioactivity as coal ashes after 500 years.
Thorium also produces more energy from the same amount of material compared to uranium.
"Two hundred tonnes of uranium can give you the same amount of energy you can get from one tonne of thorium," Rubbia told the BBC News in a recent interview.
Towards a thorium reactor
Though several reactors have made use of thorium for experimental purposes, a thorium power reactor is not as yet a reality. Countries like Russia, India and China are looking at the use of thorium and such a reactor may one day soon be a viable energy source.
So why has it taken so long for thorium to hit the nuclear power agenda? The key reason seems to be that because it can't be used to make a nuclear bomb, it was largely ignored during the Manhattan project and in the development of nuclear power stations that followed.
Space telescope Spitzer observes crystal "rain" in outer clouds of infant star
LOS ANGELES, May 26 (Xinhua) -- NASA's space telescope Spitzer have observed olivine falling down like rain on a burgeoning star, it was announced on Thursday. This is the first time such crystals have been observed in the dusty clouds of gas that collapse around forming stars, according to NASA's Jet Propulsion Laboratory (JPL). Spitzer's infrared detectors spotted the crystal rain around a distant, sun-like embryonic star, or protostar, referred to as HOPS-68, in the constellation Orion, said JPL in Pasadena, Los Angeles. In the form of forsterite, the crystals belong to the olivine family of silicate minerals and can be found everywhere from a periodot gemstone to the green sand beaches of Hawaii to remote galaxies, JPL said. NASA's Stardust and Deep Impact missions both detected the crystals in their close-up studies of comets. Astronomers are still debating how the crystals got there, but the most likely culprits are jets of gas blasting away from the embryonic star. "You need temperatures as hot as lava to make these crystals," said Tom Megeath of the University of Toledo in Ohio, the principal investigator of the research and the second author of a new study appearing in Astrophysical Journal Letters. "We propose that the crystals were cooked up near the surface of the forming star, then carried up into the surrounding cloud where temperatures are much colder, and ultimately fell down again like glitter." "If you could somehow transport yourself inside this protostar' s collapsing gas cloud, it would be very dark," said Charles Poteet, lead author of the new study, also from the University of Toledo. "But the tiny crystals might catch whatever light is present, resulting in a green sparkle against a black, dusty backdrop." Forsterite crystals were spotted before in the swirling, planet- forming disks that surround young stars. The discovery of the crystals in the outer collapsing cloud of a proto-star is surprising because of the cloud's colder temperatures, about minus 280 degrees Fahrenheit (minus 170 degrees Celsius), said JPL. This led the team of astronomers to speculate the jets may in fact be transporting the cooked-up crystals to the chilly outer cloud. The findings might also explain why comets, which form in the frigid outskirts of the solar system, contain the same type of crystals, said JPL. Comets are born in regions where water is frozen, much colder than the searing temperatures needed to form the crystals, approximately 1,300 degrees Fahrenheit (700 degrees Celsius). The leading theory on how comets acquired the crystals is that materials in young solar system mingled together in a planet- forming disk. In this scenario, materials that formed near the sun, such as the crystals, eventually migrated out to the outer, cooler regions of the solar system. Poteet and his colleagues say this scenario could still be true but speculate that jets might have lifted crystals into the collapsing cloud of gas surrounding our early sun before raining onto the outer regions of the forming solar system. Eventually, the crystals would have been frozen into comets, the scientists say. |
Penentuan Arah Kiblat Guna Matahari Tegak Atas Kaabah
Alhamdulillah, setiap tahun ada 2 waktu yang telah ALLAH SWT tentukan kedudukan matahari betul-betul tepat di atas Kaabah. Fenomena ini dipanggil Istiwa A’zam (Istiwa Utama).
Waktu berlaku Istiwa A’zam di Malaysia:
1) 28 MEI setiap tahun, tepat pukul 5.16 petang, dan
2) 16 JULAI setiap tahun, tepat pukul 5.28 petang
Kaedah untuk menentukan arah qiblat dengan tepat:
1) Pastikan jam yang selalu dibuat rujukan mengikuti waktu piawai yang tepat. Ketepatan waktu yang mengikut piawai adalah penting untuk mendapat hasil yang betul.
2) Cari objek lurus yang keras seperti batang kayu, tiang atau pen. Pacakkan objek tersebut secara menegak (bersudut 90°) di atas permukaan yang rata.
3) Pastikan bayang-bayang yang terhasil dari objek tersebut jelas boleh dilihat.
4) Dan pastikan juga anda boleh melihat matahari dari kedudukan tempat objek lurus tersebut dipacakkan dan tidak terlindung.
5) Tunggu sehingga waktu yang disebutkan di atas.
6) Perhatikan bayang-bayang yang terhasil dari objek lurus yang dipacakkan tersebut.
7) Arah qiblat adalah arah yang bertentangan dengan jatuhnya bayang-bayang itu.- Rujuk gambar.
8) Tandakan arah qiblat.
9) Yakinlah bahawa itu merupakan arah qiblat yang tepat.
Read more: http://www.azharr.com/2011/05/menentukan-arah-kiblat-menggunakan.html#ixzz1NWIERkXy
Under Creative Commons License: Attribution
Walaupun dengan kedudukan Kaabah di Makkah menjangkau ratusan ribu kilometer, menetapkan arah kiblat sebenarnya tidak menjadi persoalan kerana ilmuwan Islam benar-benar menguasai ilmu falak untuk menyelesaikan masalah itu sekadar berpandukan kedudukan cakerawala seperti bintang dan matahari.Bagaimanapun, kekurangan orang Islam yang benar-benar memahami ilmu falak ketika ini menimbulkan persoalan bagaimana untuk menentukan arah kiblat yang tepat.
Ini kerana, ada umat Islam masih menggunakan kaedah menentukan kiblat berpandukan arah matahari terbenam, sedangkan cara itu tidak tepat dan salah di sisi Islam kerana hanya dua hari dalam setahun arah kiblat boleh berpandukan kepada arah matahari terbenam.
Menyedari kesilapan itu, sewajarnya umat Islam di seluruh dunia tidak lagi menentukan jadual atau takwim solat, waktu berbuka puasa dan hari raya berpandukan kaedah matahari terbenam. Malaysia sudah tidak lagi menggunakan kaedah ini, sebaliknya berpandukan ilmu falak syarie seperti yang ditetapkan Jabatan Kemajuan Islam Malaysia (Jakim).
Dengan kepesatan teknologi, perkara sebegini tidak sepatutnya menjadi masalah sehingga membawa kepada timbulnya pertelingkahan kerana sudah ada pelbagai peralatan canggih yang boleh digunakan untuk menentukan arah kiblat.
Ketua Penolong Pengarah Cawangan Falak, Bahagian Penyelidikan Jakim, Che Alias Che Ismail, berkata penentuan arah kiblat yang tepat amat penting terutama dalam pembinaan masjid atau surau bagi memastikan ia tidak tersasar. Beliau menegaskan, ketepatan arah kiblat bukan sesuatu yang boleh dipandang ringan kerana biarpun cuma satu darjah terpesong ia bersamaan kira-kira 125 kilometer tersasar dari arah Kaabah.
Dua alat digunakan untuk menentukan arah kiblat iaitu kompas Ushikata dan Teodolite tetapi ia juga berpandukan kepada keadaan tertentu seperti diletakkan di tanah rata untuk mendapatkan ukuran tepat.
“Peralatan itu selalunya digunakan untuk menentu arah kiblat untuk tujuan pembinaan masjid atau surau. Bagi orang perseorangan atau ingin menentukan arah kiblat di rumah, cara tradisional masih boleh digunakan. Setiap tahun, ada dua keadaan yang boleh digunakan umat Islam menentukan arah kiblat iaitu ketika matahari berada betul-betul di atas Kaabah. Ia berlaku pada 28 Mei jam 5.16 petang dan sekali lagi pada 17 Julai jam 5.28 petang.”
Menggunakan Buruj-Buruj Bintang
Buruj bintang yang boleh dijadikan panduan untuk menentukan arah kiblat ialah buruj Orion (Al-Babadur). Tiga bintang berderetan dalam buruj ini iaitu Mintaka (δ Orionis), al-Nilam (ε Orionis) dan al-Nitak (ξ Orionis) boleh digunakan sebagai panduan arah kiblat. Buruj Orionakan berada di langit Malaysia ketika waktu Subuh pada bulan Julai dan kelihatan tinggi di langit pada waktu tengah malam pada bulan Disember. Pada bulan Mac dan mana yang berhampiran dengannya, buruj Orion akan berada di tengah-tengah langit ketika waktu maghrib. Arah kiblat boleh diketahui dengan mengunjurkan arah bintang tiga berderet berkenaan ke arah barat, lihat Rajah 6.1.
Selain daripada buruj Orion (Belantik), arah kiblat juga boleh ditentukan dari arah utara dan selatan yang ditunjukkan oleh beberapa buruj bintang. Setelah diketahui kedudukan utara, maka arah kiblat boleh ditentukan berdasarkan bezaan sudut di antara arah utara dengan arah kiblat. Untuk mengetahui arah kiblat dari mana-mana tempat di Malaysia, bukalah sudut sebesar 68° ke kiri, iaitu arah kiblat yang dikehendaki. Selain dari bintang kutub, anda juga boleh menggunakan arah selatan yang ditunjukkan oleh buruj Pari atau Salib Selatan (Crux).
Fenomena Istiwa Matahari dengan Kaabah
Fenomena istiwa Matahari di Kaabah |
Arah kiblat yang tepat diperoleh apabila berlaku peristiwa istiwa matahari atas Kaabah. Istiwa adalah fenomena apabila matahari berada tepat di titik zenit sesuatu tempat ketika pelintasannya di meridian tempat berkenaan. Peristiwa ini akan berlaku dua kali dalam setahun, apabila nilai sudut istiwa matahari bersamaan dengan nilai latitud tempatan. Fenomena ini hanya berlaku bagi negeri-negeri yang latitudnya kurang dan nilai sudut istiwa maksimum matahari sebanyak 23.5°. Nilai sudut istiwa matahari bersamaan dengan 0° pada 21 Mac setiap tahun, ketika ini pelintasan matahari di meridian bagi negeri-negeri yang terletak di garisan khatulistiwa, berlaku tepat di kedudukan zenit. Berdasarkan keadaan yang sama, matahari juga akan mengalami istiwa dengan Kaabah, ketika sudut istiwa matahari sama dengan latitud Kaabah. Ketika ini, bayang objek tegak di seluruh dunia akan menunjukkan arah ke Kaabah. Fenomena ini boleh dimanfaatkan untuk menyemak dan menentukan arah kiblat.
Menurut hisab, istiwa matahari di alas Kaabah akan berlaku setiap tahun pada 28 Mei pukul 5.16 petang waktu Malaysia dan sekali lagi pada 16 Julai pukul 5.28 petang. Berdasarkan fenomena ini umat Islam di Malaysia berpeluang untuk menentukan arah kiblat dari tempat masing-masing pada masa tersebut. Oleh kerana peristiwa ini berlaku waktu petang di Malaysia, maka bayang objek yang panjang ketika ini memudahkan penentuan arah kiblat dilakukan. Berdasarkan tarikh dan waktu yang dinyatakan tadi, penentuan arah kiblat boleh dilakukan dengan panduan berikut:
- Pilih tempat yang tidak terlindung dan cahaya matahari. Pacakkan satu tiang di semak arah kiblatnya.
- Pastikan tiang tersebut tegak dan lurus. Anda boleh menyemaknya dengan menggunakan sebarang pemberat yang diikat pada hujung tiang berkenaan.
- Tepat pada masanya (jam 5.16 petang pada 28 Mei atau 5.28 petang pada 16 Julai), bayang yang ditunjukkan tiang tegak, bersamaan dengan arah kiblat. Oleh kerana matahari berada di langit barat, bayang tiang akan jatuh ke arah timur. Arah kiblat ialah arah yang bertentangan iaitu menghadap ke barat. Selain dari tiang yang anda pacakkan, semakan boleh juga dilakukan dengan menggunakan bayang yang ditunjukkan oleh tiang bendera, tiang lampu atau sisi-sisi rumah yang tegak.
Cara menyemak tiang supaya tegak dan lurus
TERKINI
Akibat Durian Dijual Guna Timbang Kilogram, Generasi Muda Dan Masa Hadapan Hilang Minat Makan?
Disusun Oleh : Mohd Ezli Mashut Imej Janaan AI Oleh : Mohd Ezli Mashut =========================================== HARGA TAK MASUK AKAL. Ad...
-
(1) BISMILLAH (Dengan Nama Allah) Barangsiapa membaca sebanyak 21 kali ketika hendak tidur, nescaya terpelihara dari godaan dan gang...
-
Disusun Oleh : Mohd Ezli Mashut Pengasas Institute For Future Research, Tezla Madani Resources & Tezla Resources Pendahuluan Pendidi...
-
Sumber Foto: Mohd Ezli Mashut/11.00 Pagi/14 Jun 2023 OLEH : MOHD EZLI MASHUT Pada 16 April 2022 tular di media sosial pesawat terbang dikata...